Male Age Regression



Does sex influence mean GCSE score?

In order to answer the question posed above, we want to run a linear regression of s1gcseptsnew against s1gender, which is a binary categorical variable with two possible values. (If you check the Values cell in the s1gender row in Variable View, you can see that the categories in this sex variable are labelled as 1= Male and 2= Female). However, before we begin our linear regression, we need to recode the values of Male and Female. Why do we need to do this?

If you have been thinking about bringing your own AR story idea to life, now is the time to get in touch because I’m open for commission. Email commissions @sebtomato.com with your story idea, whether it’s just a few lines or something more detailed, and I will let you know (a) if that’s something I can write for you and (b) timing and pricing.

  • Vote/add M/M romance featuring age play - especially sexual age play. Includes infantilism, babification, ABDL, age regression, adult babies, diaper play, Daddy/Little, etc. Key thing that must be present is age regression into a baby or toddler mindset or forced/consensual acting as a baby or toddler.
  • Sigmund Freud believed age regression was an unconscious defense mechanism. It was a way the ego could protect itself from trauma, stress, or anger. Still, other psychologists think of age.
  • It is a repository of online fiction about the unusual changing of a character's age (either rapid aging or regressing to a younger physical state). Most of these stories appear first on the Transformation Story Archive (TSA) or on the TSA-Talk Mailing list.
  • A special combo pack for Male Age Regression fans! The Age Vampire is a classic age transfer comic, and one of Bojay’s most popular comics ever. And A Night at the Opera is a great Male AR comic, following Frank as he slowly regresses to a teenager, little boy and baby. Lots of fun scenes!

The codes 1 and 2 are assigned to each gender simply to represent which place each category occupies in the variable s1gender. However, linear regression assumes that the numerical amounts in all independent, or explanatory, variables are meaningful data points. So, if we were to enter the variable s1gender into a linear regression model, the coded values of the two gender categories would be interpreted as the numerical values of each category. This would provide us with results that would not make sense, because for example, the sex Female does not have a value of 2.

We can avoid this error in analysis by creating dummy variables.

Dummy Variables

A dummy variable is a variable created to assign functional numerical values to levels of categorical variables. Each dummy variable represents one category of the explanatory variable and is coded 1 if the case falls in that category and zero if not. For example, in a dummy variable for Female, all cases in which the respondent is female are coded as 1 and all other cases, in which the respondent is Male, are coded as 0. This allows us to enter in the sex values as numerical. (These numbers are just indicators.)

Because our sex variable only has two categories, turning it into a dummy variable could be as simple as recoding the values of Male and Female from 1=Male and 2=Female to 0=Male and 1=Female. (We will see later that creating dummy variables for categorical variables with multiple levels takes just a little more work.) However, it’s good practice to create a new variable altogether when you are creating dummy variables. This way, if you make an error while building the dummy variables, you haven’t altered your original variable and can always start again.

To begin, select Transform and Recode into Different Variables.

Male Age Regression Diaper

Find our variable s1gender in the variable list on the left and move it to the Numeric Variables text box.

Next, under the Output Variable header on the left, enter in the name and label for the new sex variable we’re creating. We’ve chosen to call this new variable s1gender1 and label it Sex Dummy Variable.

Click Change, to move your new output variable into the Numeric Variable -> Output Variable text box in the centre of the dialogue box.
Then, select Old and New Values.

Enter 1 under the Old Value header and 0 under the New Value header. Click Add. You should see 1 -> 0 in the Old -> New text box. Now enter 2 under the Old Value header and 1 under the New Value header.

Male age regression virusMale age regression to boys

Click Add, and then Continue.

Finally, click OK in the original Recode into Different Variables dialogue box. You have successfully recoded the values for Male and Female into the s1gender1 variable!

Age

Now, let’s run our first linear regression, exploring the relationship between s1gcseptsew and s1gender1.

Male Age Regression Comic

To perform simple linear regression, select Analyze, Regression, and Linear…

Find s1gcseptsnew in the variable list on the left and move it to the Dependent box at the top of the dialogue box. Find s1gender1 (our dummy variable) in the variable list and move it to the Independent(s) box in the centre of the dialogue box. Click OK.

Your output should look like the tables on the right.

We can see in the Coefficients table above that the relationship between sex and GCSE score is significant, as the p-value is 0.000, well below the p < 0.05 threshold. Now, we can use the SPSS results above to write out a fitted regression equation for this model and use it to predict values of GCSE scores for given certain values of s1gender1. We can calculate the mean GCSE score for boys and girls using the following regression equation:
Y = a + bX
where Y is equal to our dependent variable and X is equal to our independent variable.
Into this equation, we will substitute a and b with the statistics provided in the Coefficients output table, with a being the constant coefficient and b being the coefficient associated with s1gender1(our explanatory variable).
In this example, our equation should look like this:
s1gcseptsnew = 381.233 + (23.390 x s1gender1)
Since s1gender1 takes on the value of 1 for female students and 0 for male students, the predicted scores are as follows:
s1gcseptsnew = 381.233 + (23.390 x 1) = 404.623 (Females)
s1gcseptsnew = 381.233 + (23.390 x 0) = 381.233 (Males)

So, according to our linear regression, on average, female students earned higher total GCSE scores than male students.
Note: If you’ve been following through the previous pages of this section, these numbers may look familiar to you. (Hint: they are the means we calculated while running mean comparisons in bivariate analysis. Calculating the mean scores using simple linear regression, with just one independent variable, was effectively the same function as comparing the means. As we’ll see later, multiple linear regression allows the means of many variables to be considered and compared at the same time, while reporting on the significance of the differences.)
Rather than just accepting these results, we can now gauge how much of the variation in s1gcseptsnew is explained by s1gender1. To do this, we can simply use the r2 statistic which is already calculated for you in the Model Summary output table above. In this example, the r2 is very low at 0.009. This shows that only 0.9% of the variation in GCSE is explained by sex (0.009 X 100 gives us the percentage). This suggests that other factors are affecting a young person’s total GCSE score.

Determining the Significance of the Independent Variable

What is the significance of sex as a predictor of total GCSE score?

Our sample of data has shown us that, on average, female students earn total GCSE scores that are 23.390 points higher than male students. We want to know if this is a statistically significant effect in the population from which the sample was taken. To do this, we carry out a hypothesis test to determine whether or not b (the coefficient for females) is different from zero in the population. If the coefficient could be zero, there is no statistically significant difference between males and females.

SPSS calculates a t statistic and a corresponding p-value for each of the coefficients in the model. These can be seen in the Coefficients output table. A t statistic is a measure of how likely it is that the coefficient is not equal to zero. It is calculated by dividing the coefficient by the standard error. If the standard error is small relative to the coefficient (making the t statistic relatively large), the coefficient is likely different from zero in the population.

Male Age Regression Virus

The p-value is in the column labelled Sig. As in all hypothesis tests, if the p-value is less than 0.05, then the variable is significant at the 5% level. That is, we have evidence to conclude that b is different from zero.
In this example, we can see in the Coefficients output table that t = 10.875 with a corresponding p-value of 0.000. This means that the chances of the difference between males and females that we have calculated is actually happening due to luck is very small indeed. Therefore, we have evidence to conclude that s1gender is a significant predictor of s1gcseptsnew in the population.

Male Age Regression To Infant

Summary

You’ve just used linear regression to study the relationship between our continuous dependent variable s1gcseptsnew and gender1, a categorical independent variable with just two categories. Using linear regression, you were able to predict GCSE scores for men and women. What if you wanted to fit a linear regression model using GCSE score and something like ethnicity, a categorical independent variable with more than two categories? The next page will take you through how to run a simple linear regression with a categorical independent variable with several categories.

Note: as we are making changes to a dataset we’ll continue using for the rest of this section, please make sure to save your changes before you close down SPSS. This will save you having to repeat sections you’ve already completed.